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INTRODUCTION 

Sugarcane (Saccharum officinarum) is the 

leading cash crop of Bihar. In India it is grown 

in area of 5 (five) million hectares with 

production of 341.20 million tonne. The 

average productivity is 68.25 tonne / hectare, 

2012-13 (Source: Agricultural Research Data 

Book 2015). Although available technology 

was demonstrated that sugarcane productivity 

can easily be enhanced to the extent at of least 

80 tonnes per hectares. It is now a complex 

scientific activity aimed at producing 

maximum amount of agricultural produce with 

minimum expenditure in terms of time, space 

and energy to meet the needs of a growing 

population and economy. In Bihar rice is 

cultivated over an area of about 0.252 million 

hectare with production of 12.60 million tonne 

and productivity is 50 tonne /ha, 2012-13 

(Source: Indian Sugar) which is much lower 

than most of the rice growing states of the 

country.
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ABSTRACT 

This study is undertaken to attempt forecasting the sugarcane (Saccharum officinarum) 

productivity of Bihar through fitting of well-known Box Jenkins univariate Auto Regressive 

Integrated Moving Average (ARIMA) model. Time series data on sugarcane productivity in 

Bihar from 1939-40 to 2014-15 were taken from Sugarcane Research Institute (SRI)* Pusa, 

Bihar and Indian sugar** for the study. The data on sugarcane productivity in Bihar from the 

year 1940 to 2010 were utilized to build an ARIMA model and validated through five-year 

productivity data from 2011 to 2015. Akaike information criterion (AIC) was selected for best 

model selection criteria. ARIMA (0, 1, 1) model found best suitable model for sugarcane 

productivity in Bihar based on AIC model selection criteria. The performances of models are 

validated by comparing with actual values of sugarcane productivity in Bihar data. Using 

developed ARIMA (0, 1, 1) model, two years ahead, year 2016 and 2017 sugarcane 

productivity in Bihar forecasted showing increasing productivity with 4.22 % and 5.15 % 

prediction standard error. 
 

Key words: Time series, ARIMA, AIC, Sugarcane productivity in Bihar, Forecasting 

Data source: *Sugarcane Research Institute (SRI), Pusa, Bihar and ** Indian Sugar, 2016. 
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In spite of recent technological advances, the 

sugarcane productivity is low. Forecasting of 

sugarcane productivity is of immense value 

and plays an important role in many important 

decisions. The univariate Box-Jenkins
3
 

approach for forecasting is based on the solid 

foundation of classical probability theory and 

mathematical statistics. It is a family of models 

out of which one appropriate model is selected 

having optimal univariate forecast. For the 

purpose of present study, the data on yield 

(t/ha) of sugarcane has been collected for the 

period of 76 years i.e. from 1940 to 1915 for 

Bihar from the Sugarcane Research Institute, 

Dr. Rajendra Prasad Central Agricultural 

University, Pusa, Bihar and Indian Sugar, May 

2016 for building forecast model and 

generating short term forecast on sugarcane 

productivity. 
 

Review of Literature 

Several studies have been carried out to 

develop suitable forecast models for various 

crops. Most of earlier studies are based on 

multiple regression technique. Multiple 

regression techniques violets the principle of 

parsimony (which is a characteristics of a good 

model) due to the presence of correlation 

among the independent variables or 

multicollinearity, instead of increasing the 

value of multiple correlation co-efficient 

significantly. Some review of the research 

work is cited here. 

Agrawal et al
1
., have developed a forecast 

model for predicting rice yield of Raipur 

district. They have employed stepwise 

regression technique and explanatory variables 

included in the model are weekly rainfall, 

number of rainy days, relative humidity and 

maximum temperature. George and Kumar
4
 

have develop pre-harvest forecast of cashew 

yield by adopting the conventional regression 

techniques. All these investigations, however, 

have the inherent drawback due to the 

presence of multicollinearity and an 

orthogonal transformation of the explanatory 

variables seems to be useful to tackle this 

problem to a certain extent. Gupta
5
 has 

discussed about ARIMA model and forecasts 

on tea production in India. He developed and 

applied an ARIMA forecasting model for tea 

production in India. The model is developed 

using monthly tea production data in India for 

the period January 1979 to July 1991 and 

forecasts are made for the future 12 month 

periods. Boran and Bora
2
 have discussed about 

the monthly rainfall around Guwahati using a 

seasonal ARIMA model. The model 

parameters are estimated using Marquardt 

algorithm for nonlinear optimization the 

various stages of model building have been 

presented in a simple algorithm form. The 

model is used to predict rainfall for the month 

ahead and month wise rain fall for the year 

ahead. Min
7
 has discussed about forecasting 

for the changes in number of hogs and hog’s 

farms. This study was carried out to forecast 

the changes in the number of pigs and pigs’ 

farms in the Korea, Republic by total and herd 

size using ARIMA models. In view of the 

presence of autocorrelation among 

observations in the three data sets, ARIMA 

model of various types have been developed 

separately for describing marine inland and 

total fish production of India. The identified 

models are then used to forecast the future fish 

production. 
 

MATERIALS AND METHODS 

Objective of the present study is to develop an 

adequate forecast model for describing the 

sugarcane productivity in Bihar. Univariate 

Box-Jenkin Autoregressive Integrated Moving 

Average (ARIMA) technique has been applied 

for obtaining the same. This approach 

automatically select most reliable forecast 

model from the family of ARIMA model by 

going through three iterative stages i,e. 

Identification stages, estimation stages and 

diagnostic checking stage. This technique 

provides a parsimonious model that is a model 

with smallest number of parameters for 

describing the available data. The secondary 

data covering the period from the year 1939-

40 to 2014-15 for Bihar. Data for 2011-12 to 

2014-15 have been used for computing the 

forecast error and the rest were used for 

building the models. Building an ARIMA (p, 

d, q) model basically consisted of three steps, 

namely; (a) Identification of the order of the 

model (b) Estimation of model parameters and 

(c) Diagnostic checking for adequacy of the 

fitted model
3
. 
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Mathematically, an ARIMA (p,d,q) model is 

given by- 

ф (B) Δ
d
  ̅t = Ɵ (B) at  

Where,  

Δ
d 

= (1-B)
d 

ф (B) = (1- фB- фB
2
- ………… - фB

p
) 

Ɵ (B) = (1- Ɵ1B Ɵ2B
2
- ……… ƟqB

q
) 

Z = Zt - µ 

Zt = Stationary time series data 

d = Order of differencing 

at = random shock 

p = Order of auto-regression 

q = Order of moving average 

 Under identification phase, the first 

order differencing (r=1,2, …) of Zt is done till 

a stationary time series is achieved. The order 

p & q is decided on the basis of ACF & PACF 

and the criteria led down by Box and Jenkins
3
, 

after determining the value of p, d and q. The 

model parameter estimated. Diagnostic 

checking of the fitted model is done through 

some important statistics such as t-test and χ
2
 

(Chi-square)
6
 of the residual ACF. 

A brief description of various models of 

ARIMA family are cited here: 

ARIMA model 

ARIMA model is an algebraic statement 

telling how the observations on a variable are 

statistically related to past observation on the 

same variable. In fact, ARIMA model is a 

family of models consisting of three kinds of 

model, which are given below; 

Autoregressive model; This can be 

represented as  

Zt = C + ф1 Zt – 1+ at   …(1) 

Where 

C = µ ( 1- ф1)  = Constant term 

µ = Constant parameter 

ф  = Deterministic coefficient. its 

value determines the relationship  

between Zt and Zt – 1 (Lagged observation) 

at = Random shock having some 

continuous statistical distribution. 

 The term ф1 Zt – 1 is autoregressive 

term, and the longest lag attached to it is t-1 

thus, above is autoregressive model of order 1, 

denoted as AR (1). The parameters of model 

(1) are estimated by least square method. 

Approximate estimates for µ and ф1 can be 

obtained as Z (mean of the available 

observation) and r1 (autocorrelation function) 

respectively. Similarly, second order 

autoregressive model denoted as AR (2) can 

be represented as  

Zt = C + ф1 Zt – 1+ ф2 Zt – 2 + at  

In this model Zt is linearly related to the past 

observation Zt – 1 and Zt – 2. The lease square 

estimate of ф1 and ф2 are approximated by  

ф1   =   r1 (1-r2) / 1-r
2

1   and    ф2    = r2 - r
2
1) / 1-r

2
1      

Where, 

 r1 & r2 are autocorrelation function for 

first and second lag respectively. 

In general, one can represent autoregressive 

model of order p denoted as AR (p) as a liner 

combination of p-past values and a random 

term i.e. 

Zt    = C + ф1 Zt – 1+ ф2 Zt – 2 + … + фp Zt – p  + at 

Moving Average(MA) model: A moving 

average model of order one denoted as MA (1) 

can be represented as  

Zt = C – Ɵ1 at– 1+ at                                                            …(2) 

Where, 

C = µ (1- Ɵ1) = constant term 

Ɵ1 = Moving average coefficient 

determines the statistical relationship between  

Zt and at-1 (lagged random shock) 

at = random shock with mean '0' 

and variance σ
2
. 

Estimation of parameters of MA model: 

Estimation of parameters of MA model is 

more difficult than an AR model because 

efficient explicit estimators cannot be found. 

Instead some numerical iteration method is 

used. For example, to estimate µ and Ɵ of 

equation (2) i.e. 

Zt =  C – Ɵ1  at– 1+ at     

residual sum of square (RSS) ∑ a
2

t in terms of 

observed Z's and the parameters µ and Ɵ and 

them differentiate with respect to µ and Ɵ to 

obtain estimates µ and Ɵ. Unfortunately, the 

RSS is not a quadratic function of the 

parameters and so explicit least square 

estimates cannot be found. An iterative 

procedure suggested by Box-Jenkins is used in 

which suitable values of µ and Ɵ such as µ = Z 

and Ɵ given by the solution of equation (3) 

Zt = C + ф1 Zt – 1+ … +  фp Zt – p – Ɵ1at-1 … - Ɵq 

at – q  + at    …(3) 
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Then the RSS may be calculated recursively 

from 

at = Z1-c + Ɵ1 at-1 with a0=0  

This procedure then can be repeated for a grid 

of points in (µ, Ɵ) plane. We may then by 

inspection choose that value of (µ, Ɵ) as 

estimates which minimized RSS. The lease 

square estimates are also maximum likelihood 

estimated conditional on a fixed value of a0 

provided at is normally distributed. 

Autoregressive Moving Average Model 

(ARMA):  The combination of AR (p) and 

MA (q) models to describe a given series is 

known as ARMA (p, q) which can be 

represented as  

Zt = C + ф1 Zt – 1+ … +  фp Zt – p – Ɵ1at-1 

… - Ɵq at – q  + at  

 

The Box-Jenkins modeling procedure 

Box-Jenkins proposed a practical three stage 

procedure for finding a good model. a sketch 

of the broad outline of the Box-Jenkins 

modeling procedure is summarized 

schematically in figure 1 

Stage 1 Identification of the order of the 

model: 

It  ̅ be the mean of a stationary time series 

such that Zt = Zt –  ̅ denoting the number of 

observations by n and the number of 

computable lags by k the estimated 

autocorrelation function (ACF) rk of the 

observations separated by k time periods. 

Estimation of parameters of MA model: 

Estimation of parameters of MA model is 

more difficult than an AR model because 

efficient explicit estimators cannot be found. 

Instead some numerical iteration method is 

used. For example, to estimate µ and Ɵ of 

equation (2) i.e.  

 Zt =  C – Ɵ1  at– 1+ at     

residual sum of square (RSS) ∑ a
2
t in terms of 

observed Z's and the parameters µ and Ɵ and 

them differentiate with respect to µ and Ɵ to 

obtain estimates µ and Ɵ. Unfortunately, the 

RSS is not a quadratic function of the 

parameters and so explicit least square 

estimates cannot be found. An iterative 

procedure suggested by Box-Jenkins is used in 

which suitable values of µ and Ɵ such as µ = Z 

and Ɵ given by the solution of equation (3) 

Zt = C + ф1 Zt – 1+ … +  фp Zt – p – Ɵ1at-1 

… - Ɵq at – q  + at    …(3) 

Then the RSS may be calculated recursively 

from 

at = Z1-c + Ɵ1 at-1 with a0=0  

This procedure then can be repeated for a grid 

of points in (µ, Ɵ) plane. We may then by 

inspection choose that value of (µ, Ɵ) as 

estimates which minimized RSS. The lease 

square estimates are also maximum likelihood 

estimated conditional on a fixed value of a0 

provided at is normally distributed.  

Autoregressive Moving Average Model 

(ARMA):  The combination of AR (p) and 

MA (q) models to describe a given series is 

known as ARMA (p, q) which can be 

represented as  

Zt = C + ф1 Zt – 1+ … +  фp Zt – p – Ɵ1at-1 

… - Ɵq at – q  + at  

 

The Box-Jenkins modeling procedure 

Box-Jenkins proposed a practical three stage 

procedure for finding a good model. a sketch 

of the broad outline of the Box-Jenkins 

modeling procedure is summarized 

schematically in figure 1 

Stage 1 Identification of the order of the 

model: 

It  ̅ be the mean of a stationary time series 

such that Zt = Zt –  ̅ denoting the number of 

observations by n and the number of 

computable lags by k the estimated 

autocorrelation function (ACF) rk of the 

observations separated by k time periods.   
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Stage 2 Estimation of model parameter; 

Box-Jenkins time series models written as 

ARIMA (p, d, q) amalgamate three type of 

processes namely auto-regressive (AR) or 

order p; differencing to make a series 

stationary of degree d and moving average 

(MA) of order q. At the parameter estimation 

stage the aim is to obtain estimates of the 

tentatively identified ARMA model 

parameters of Stage-I for   given values of p 

and q. In general, ARIMA coefficients (the ф 

's and Ɵ's) must be estimated using a nonlinear 

least square procedure, while several nonlinear 

least square methods are available, the one 

most commonly used t estimate ARIMA 

models is known as "" Marquardt's 

compromise”. 

Stage 3 Diagnostic checking for the 

adequacy of the model
3
: 

This is the third stage of model formulation. 

At this stage the decision about the statistical 

adequacy of the model is taken. Most 

important test of the statistical adequacy at an 

ARIMA model involves the assumptions that 

the random shocks (at) are independent. 

Meaning not autocorrelate, since in practice 

the random shocks cannot be observed the 

estimate at residual(at) is taken in to test the 

hypothesis about the independent of random 

schocks. This mainly performed by the 

examination of residual ACF, t test for the 

residual ACF and 𝛘2
 –test based on L-Jung and 

Box for the residual autocorrelation. 

 

RESULTS AND DISCUSSION 

This study is undertaken to attempt 

forecasting the sugarcane productivity of 

Bihar through fitting of well-known Box 

Jenkins univariate Auto Regressive Integrated 

Moving Average (ARIMA) model. Time 

series data on sugarcane productivity in Bihar 

from 1939-40 to 2014-15 were taken from 

Sugarcane Research Institute (SRI)*Pusa , 

Bihar and Indian sugar** for the study. The 

data on sugarcane productivity in Bihar from 

the year 1940 to 2010 were utilized to build 
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Fig. 3.1 Stages in the Box-Jenkins iterative approach to model building 

 

Tentatively choose one or more 

ARIMA MODELS 

 

Estimate the parameters of the 

model (S) choosen at stage 1 

 

 

Check the model (S) for adequacy 

 

Forecast 

 

Is model satisfactory 
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an ARIMA model and validated through five-

year productivity data from 2011 to 2015. 

ARIMA model for sugarcane productivity in 

Bihar: 

Model Identification:  

The first and foremost stage in the 

identification of an ARIMA model judging the 

Stationary behavior of the under lying process. 

The graph of the time series data (Fig-1 to 

Fig.- 3) indicates the non-stationary of the 

underlying process. The stationary was 

achieved by the first order differentiation of 

the original time series data (Fig- 4 to Fig. 6). 

The autocorrelation and partial autocorrelation 

up to lag 15 (fifteen) are presented in Table- 1  

In addition to the time series plot of the 

original series Zt (Fig. 1), the non-stationary 

behavior is also indicated by the failure of auto 

correlation value for Zt to die out rapidly 

(Table 1) autocorrelation of (Δ Zt) are however 

small after the first lag and showed a cut off 

after lag 1. This suggest first order difference 

are stationary and hence d = 1. For further 

modeling first order difference are therefore 

considered. The ACF of the first order 

difference drops off after lag 1. Since the 

autocorrelation function has exponentially 

decaying pattern, its partial autocorrelation 

functions cuts off to zero after lag 1. This 

suggest an autoregressive model of the order 1. 

Since in practice P is usually not larger than 2 

or 3 for non-seasonal models, all models up to 

the order of 2 have been fitted.  The ACF of 

first order difference drop after lag 1. Since 

autocorrelation function has exponentially 

decaying pattern and its partial autocorrelation 

function cuts off to zero after lag 1 which 

suggest ARIMA (0,1,1). 
 

The ACF and PACF plot of the data showed the non-stationarity (Fig.- 1, 2 and 3) 

 

 

 

 

 

 

Fig. 1: 

                                                    

 

 

 

 

 

 

 

 

 

 

Fig. 2: 

 

 

 

 

                   

 Fig. 3: 
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After first order differencing the data showed stationary; d=1(Fig. 4.4, 4.5 and 4.6) 

 

                                                          

 

 

 

 

 

 

 

Fig. 4: 

 

 

                                                             

 

 

 

 

 

 

 

 

Fig. 5: 

 

 

 

 

                                                        

 

 

 

 

 

 

 

 

 

Fig. 6: 
 

Only one line at lag 5 in ACF function is 

touching the significant line so q=1. PACF 

function, no line touching the significance 

level, hence p=0. Hence our ARIMA model 

will be ARIMA (0,1,1)In figure-7 the graph 

shows forecast trend likely to be constant 

with increasing interval trend for the year 

2016 and 2017. The figure- 8, graph shows 

the well fitted and forecast curve are likely to 

be superimposed to observed. This shows that 

model (0,1,1) is good fitted. 
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Fig. 7: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 8: 
 

 

1. Estimation of model parameter:  The 

various parameters of the different models 

have been presented in Table- 3. The tentative 

selection of model is presented as ARIMA 

(0,1,1) which containing only one moving 

average term θ 1. The output of fitted model 

has been presented in Table- 3. The 

invertibility condition have been satisfied. 

Since |θ | <1. The significant estimated 

coefficient θ1 indicates the parsimonious of the 

model. Since the correlation coefficient 

between the estimates of the parameters is not 

high, the resultant model can be considered as 

stable. 

2.  Selection of good model: A good model 

should be parsimonious, stationary and 

invertible. The estimated coefficients should 

be of high quality and stable. The five models 

under comparison fulfills the stationary and 

invertibility condition wherever necessary. For 

selection of the parasimonious model, a 

guiding principle suggested by Box and 

Jenkins has been used. Based upon the 

significance of estimated coefficient ARIMA 

(1,1,0), ARIMA (0,1,1) and ARIMA (2,1,0) 

results in a parsimonious model.  A 

comparison of different models suggests 

ARIMA (0, 1, 1) Table- 3. Since it fulfils the 

invertibility conditions, parsimoniousness, 

stability of estimates of the parameters and has 

lowest AIC, MAPE, RMSE, BIC and highest 

R
2
 value in comparison to other parasimonious 

models.  

3. Diagnostic checks: For deciding the 

statistical adequacy of the model diagnostic 

checks with respect to the independence of 

random shocks (at) has been performed. A 

statistical adequate model is one whose 

random shocks are not auto correlated. For this 

purpose, residual autocorrelation function 

(ACF) has been calculated and presented in 

the output Tables 2. A t-test has been 

performed to test the significance of null 

hypothesis H0:     (a) = 0 for each residual 
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autocorrelation coefficient. The respective 

standard error has been computed using 

Bartlettes (1946) approximation formulae. The 

non-significance of residual ACF indicates the 

independence of random shocks. The 

independence of the random shocks is also 

confirmed by a Chi- squares test suggested by 

L-Jung and Box- test using Q-statistics
6
 which 

comes to be 22.25 (Non-significant Chi-square 

value at 17 d.f.) for the selected model 

ARIMA (0,1,1) Table 2. Thus the selected 

ARIMA model of the order (0,1,1) or MA (1) 

seems to be appropriate. The forecast error for 

the one step ahead and two step ahead   has 

been computed as 4.2210% and 5.1509 

respectively (Table 4) 

Computation of forecast and their 

confidence intervals: After confirming the 

validity of the model it is used to forecast the 

future values of the observed time series. Thus 

using ARIMA (0,1,1) the forecast along the 

confidence intervals have been computed for 

the 5 periods ahead and it presented in Table 4. 

The table shows the increasing trend of 

sugarcane productivity in Bihar by the year 

2016 and 2017. The sugarcane productivity of 

Bihar is expected to be 50.0698 tonne /hac for 

both the years 2016 and 2017 with a 

confidence limit of 58.9638 to 42.4179 and 

60.7864 to 40.5953 respectively. 

 

Table 1: Autocorrelation (ACF) and partial autocorrelation (PACF) 

Lag ACF PACF 

1 -0.196 -0.196 

2 -0.169 -0.216 

3 -0.074 -0.170 

4 -0.022 -0.133 

5 0.100 0.012 

6 -0.016 -0.032 

7 0.042 0.053 

8 -0.102 -0.078 

9 0.068 0.056 

10 -0.084 -0.100 

11 -0.060 -0.110 

12 -0.031 -0.145 

13 -0.067 -0.186 

14 0.289 0.173 

15 -0.273 -0.257 

 

Table 2: Output of fitting ARIMA (0,1,1) for Bihar 

  Parameter Estimates 

Parameter Estimates Standard Error t-value 

Θ1 0.335 0.118 3.022
** 

Constant - 5.012 5.119 -0.979 

  Autoregressive factor 

                    θ(B) = 1+0.335B 

Forecast model 

                       Zt – Zt – 1 = - 5.012 - 0.335 ( Zt-1 – Zt-2) + at 

Diagnostic Check 

Lags Residual ACF SE 

1 0.071 0.120 

2 -0.126 0.120 

3 - 0.233 0.122 

4 -0.078 0.128 

5 0.110 0.129 
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6 0.008 0.130 

7 0.042 0.130 

8 -0.053 0.130 

9 -0.008 0.131 

10 0.136 0.131 

11 -0.140 0.133 

12 -0.070 0.135 

13 -0.059 0.135 

14 0.257 0.136 

15 -0.125 0.143 

 Q-statistics (L Jung Box Test) = 22.250 

 D.F.  = 17 
 

Table 3: Best fitting model for Bihar 

Model AIC MAPE RMSE BIC R
2 

ARIMA(1,1,0) 414.14 9.37 4.421 3.155 0.722 

ARIMA(0,1,1) 412.88 9.16 4.366 3.130 0.729 

ARIMA (1,0,1) 422.08 9.73 4.521 3.258 0.715 

ARIMA (0,1,0) 415.09 9.66 4.484 3.122 0.710 

ARIMA (2,1,0) 415.27 9.17 4.443 3.225 0.723 
 

 

Table 4: Forecast and their confidence intervals of ARIMA (0,1,1) for Bihar 

Periods Forecast 
95% limits 

Actual 
Forecast 

standard error Lower Upper 

2011 43.1260 51.3990 34.8531 51.4600 4.2210 

2012 48.9547 57.2276 40.6817 50.0000 4.2210 

2013 49.6857 57.9587 41.4128 50.0000 4.2210 

2014 49.9055 58.1785 41.6326 50.0000 4.2210 

2015 49.9716 58.2446 41.6986 51.0000 4.2210 

2016 50.6908 58.9638 42.4179  4.2210 

2017 50.6908 60.7864 40.5953  5.1509 
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